Interregional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG
نویسندگان
چکیده
Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an interregional correlation analysis of the 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using 18F-FDG. For detailed interregional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the interregional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using 18F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders.
منابع مشابه
Evaluation of Wilson Disease With 18F-FDG PET/CT
Wilson disease is an autosomal-recessive disorder with copper accumulation and deposition in different organs. Disturbances in liver function and basal ganglia lead to hepatic and extrapyramidal motor symptoms. Age of onset ranges from 5 to 40 years of age. Wilson disease should be ruled out by measuring serum ceruloplasmin levels, and 24-hour urinary copper levels. We report a case of a 30 yea...
متن کاملClinical utility of 11C-flumazenil positron emission tomography in intractable temporal lobe epilepsy.
BACKGROUND 11C-flumazenil (FMZ) positron emission tomography (PET) is a new entrant into the armamentarium for pre-surgical evaluation of patients with intractable temporal lobe epilepsy (TLE). AIMS To analyze the clinical utility of FMZ PET to detect lesional and remote cortical areas of abnormal benzodiazepine receptor binding in relation to magnetic resonance imaging (MRI), 2-Deoxy-2 [18F]...
متن کاملIn vivo retention of 18F-AV-1451 in corticobasal syndrome
OBJECTIVE To study the usefulness of 18F-AV-1451 PET in patients with corticobasal syndrome (CBS). METHODS We recruited 8 patients with CBS, 17 controls, 31 patients with Alzheimer disease (AD), and 11 patients with progressive supranuclear palsy (PSP) from the Swedish BioFINDER study. All patients underwent clinical assessment, 18F-AV-1451 PET, MRI, and quantification of β-amyloid pathology....
متن کاملIncreased interictal cerebral glucose metabolism in a cortical-subcortical network in drug naive patients with cryptogenic temporal lobe epilepsy.
Positron emission tomography with [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG) has been used to assess the pattern of cerebral metabolism in different types of epilepsies. However, PET with [18F]FDG has never been used to evaluate drug naive patients with cryptogenic temporal lobe epilepsy, in whom the mechanism of origin and diffusion of the epileptic discharge may differ from that underlying o...
متن کامل18F-FDG PET/CT in pachygyria during evaluation for seizure disorder
Pachygyria or incomplete lissencephaly is a developmental condition due to abnormal migration of neurons. The association of seizures in this condition warrants investigation like electroencephalogram (EEG) and magnetic resonance imaging (MRI). 18F-flurodeoxyglucose positron emission topography computed topography (18F-FDG PET/CT) has a potential role in commenting of wide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 51 شماره
صفحات -
تاریخ انتشار 2017